Version 1.0

General Certificate of Education June 2010

Mathematics

MPC2

Pure Core 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
Α	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct x marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2				
Q	Solution	Marks	Total	Comments
1(a)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ seen or used for the area
	$= \frac{1}{2} \times 8^2 \times 1.4 = 44.8 \ \{m^2\}$	A1	2	Must be exact, not rounded to
(b)(i)	${\rm Arc} = r\theta$	M1		$r\theta$ seen or used for the arc length
	= 11.2	A1		PI Condone AWRT 11.2
	Perimeter of sector = 16+11.2 = 27.2 {m}	A1F	3	Ft on c's evaluation of 8×1.4
(ii)	$27.2 = 2\pi x$	M1		[c's numerical answer for (b)(i)] = $2\pi x$
	$x = \frac{27.2}{2\pi} = 4.329 = 4.33$ to 3sf	A1	2	Condone >3sf
	Total		7	
2(a)	$u_2 = 6.8$	B1		OE eg 34/5
	$u_2 = 6.8$ $u_3 = 8.72$	B1F	2	Ft on 6+0.4×c's u_2
(b)	L = 6 + 0.4L	M1		Replacing u_{n+1} and u_n by L
	$L = 6 + 0.4L$ $L = \frac{6}{1 - 0.4}$	m1		PI provided M scored
	L = 10	A1	3	Must form an equation in L otherwise $0/3$
	Total		5	

MPC2 (cont	MPC2 (cont)					
Q	Solution	Marks	Total	Comments		
3(a)	6 15	M1		Sine rule OE PI		
	$\frac{1}{\sin\theta} - \frac{1}{\sin 150}$					
	$\sin\theta = \frac{6 \times \sin 150}{15} \qquad \{=0.2\}$	m1		Rearrangement		
	$\theta = 11.53(6) = 11.5^{\circ} \{ \text{to nearest } 0.1^{\circ} \}$	A1	3	AG Must see at least 4sf value or an exact value for $\sin\theta$ (0.2, 3/15, OE) before seeing the printed value 11.5		
(b)	Angle $B = 180 - (150 + \theta) = 18.5 \{\text{to 3sf}\}$	B1		Award for B = any value between 18 and19 inclusive $[18.463041]$		
	Area = $\frac{1}{2} \times 6 \times 15 \sin B$	M1				
	$= 14.3 \{ cm^2 \}$ to 3sf	A1	3	Accept a value 14.2 to 14.3 inclusive Note: For methods involving AC , for the M1 need both a correct method to find AC and a correct area formula		
	Total		6			

MPC2 (cont	MPC2 (cont)						
Q	Solution	Marks	Total	Comments			
4(a)	p = -3; q = 3	B1;B1	2	Accept even if just embedded in the expansion			
(b)(i)	$\int \left(1 - \frac{1}{x^2}\right)^3 dx =$ $\int \left(1 - 3x^{-2} + 3x^{-4} - x^{-6}\right) dx$ $= x + 3x^{-1} - x^{-3} + \frac{1}{5}x^{-5} \{+c\}$	M1 m1 A2F,1F	4	Uses (a) with indication of integration and indication of $\frac{1}{x^n} = x^{-n}$ PI At least three powers of <i>x</i> correctly obtained Ft on c's non-zero integers <i>p</i> and <i>q</i> . A1F if 3 of the 4 terms are correct (ft) or if all correct (ft) but left unsimplified Condone missing + <i>c</i> .			
(ii)	$\int_{\frac{1}{2}}^{1} \left(1 - \frac{1}{x^2}\right)^3 dx = \left(1 + 3 - 1 + \frac{1}{5}\right) - \left(\frac{1}{2} + 6 - 8 + \frac{32}{5}\right)$ $= -\frac{17}{10}$	M1 A1	2	Attempting to calculate F(1)–F(1/2) where F is c's answer to part (b)(i) provided F is not the integrand or the c's equivalent of the integrand $(1-\frac{1}{x^2})^3$. OE exact answer eg –1.7			
	Total		8	-			
	l otal		ð				

MPC2 (cont	MPC2 (cont)					
Q	Solution	Marks	Total	Comments		
5(a)(i)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{10}{1-r}$	M1		$\frac{a}{1-r}$ used		
	$\frac{10}{1-r} = 50 \text{ so } 1 - r = \frac{10}{50} \implies r = \frac{4}{5}$	A1	2	AG Condone verification with the correct final statement but be convinced.		
(ii)	2^{nd} term = ar = 8	M1 A1	2	<i>ar</i> stated or used for the 2^{nd} term. PI by ans'8'		
(b)(i)	$4^{\text{th}} \text{ term} = a + 3d; 8^{\text{th}} \text{ term} = a + 7d$ a + 3d = 10, a + 7d = 8	M1 A1F		Uses $a + (n - 1)d$ correctly at least once Both eqns. correct ft on c's (a)(ii) OE eg 8 = 10 + 4d		
	$\Rightarrow 4d = -2 \Rightarrow d = -0.5$	A1	3	OE fraction.		
(ii)	a + 3(-0.5) = 10	M1		An appreciation that <i>a</i> is required in <u>(b)(ii)</u> and a valid method to find <i>a</i> anywhere or PI if $a = 11.5$ seen/used		
	$\Rightarrow a = 11.5$	A1F		Ft on c's non-zero value for d ie using $a = 10-3d$ or $a = c$'s $8-7d$. [c's 8 is candidate's answer to (a)(ii)]		
	$\sum_{n=1}^{40} u_n = S_{40} = \frac{40}{2} [2a + (40 - 1)d]$ = 70	M1 A1	4	$\frac{40}{2}[2a+(40-1)d]$ OE		
	Total		11			

MPC2 (cont)				
Q	Solution	Marks	Total	Comments
6(a)	$\sqrt{x} = x^{\frac{1}{2}}$	B1		PI
	$\frac{x^3 + \sqrt{x}}{x} = \frac{x^3}{x} + \frac{\sqrt{x}}{x} = x^2 + x^{-\frac{1}{2}}$ $\frac{dy}{dx} = 2x - \frac{1}{2}x^{-\frac{3}{2}}$	B1;B1	3	Accept $p=2$; $q=-\frac{1}{2}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{1}{2}x^{-\frac{2}{2}}$	M1 A1	2	Reduces both powers by 1 ACF
(ii)	When $x = 1$, $y = 2$	B1		PI if not stated explicitly eg the '2' may appear in the correct posn. in later eqn.
	When $x = 1$, $\frac{dy}{dx} = 2 - \frac{1}{2} = \frac{3}{2}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = 1$ PI
	Gradient of normal = $-\frac{2}{3}$	m1		-1/(c's value of dy/dx when x = 1) either stated as the gradient of the normal or used as the gradient in the equation of the normal
	Equation of normal: $y-2 = -\frac{2}{3}(x-1)$	A1F	4	Only ft on c's $\frac{dy}{dx}$ in part (b)(i).
	$\frac{d^2 y}{dx^2} = 2 + \frac{3}{4} x^{-\frac{5}{2}}$	M1 A1F	2	ACftF Reduces both powers by 1. Ft on (b)(i) provided at least one power to be differentiated is both negative and fractional
(ii)	(Since x>0,) $\frac{d^2 y}{dx^2} > 0$			
	For a maximum point $\frac{d^2 y}{dx^2}$ is not			$d^2 v$
	positive so C has no maximum points	E2,1,0	2	E1 for attempt to find the sign of $\frac{d^2 y}{dx^2}$; either in general terms or at the pt(s)
				where c's $dy/dx = 0$ for the remaining E mark a correct
				justification for why $\frac{d^2 y}{dx^2} > 0$ and also
				a full correct concluding statement must be made.
	Total		13	

MPC2 (cont)				MPC2 - AQA GCE Mark Scheme 2010 June series
	Solution	Marks	Total	Comments
7(a)	$\frac{y}{1}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$ x	B1 B1	2	Correct shape meeting positive <i>y</i> -axis and only one oscillation within interval 0 to 2π
				The three correct intercepts stated; Accept 1.57 for $\pi/2$ and 4.71 for $3\pi/2$ but must be evidence of radian vals. not just degrees Ignore any parts of the graph clearly
				indicated as outside the given interval
(b)(i)	$1 - \cos^{2} \theta = \cos \theta (2 - \cos \theta)$ $1 = 2\cos \theta \implies \cos \theta = \frac{1}{2}$	M1		$\cos^2 \theta + \sin^2 \theta = 1$ used
	-	A1	2	CSO AG Completion
(ii)	$\sin^2 2x = \cos 2x(2 - \cos 2x)$			
	$\Rightarrow \cos 2x = \frac{1}{2}$	M1		Uses (b)(i)
	$\{2x=\}$ $\cos^{-1}\left(\frac{1}{2}\right) = 1.04(7)$	ml		PI Accept 1.05, $\frac{\pi}{3}$; Condone 60°
	<i>x</i> = 0.524, 2.62 <i>x</i> = 0.523(59), 2.61(7)	A2,1,0	4	Condone >3sf; Condone $x = 0.525$, 2.62 Accept truncated '3sf' vals $x = 0.523$, 2.61 Deduct 1 mark for each extra (>2 solns) in the given interval from A marks to a min of A0. Ignore any solns outside the given interval 0 to π . Accept, as equivalent, the exact answers $x = \frac{\pi}{6}$ and $x = \frac{5\pi}{6}$ when seen and apply ISW if 'errors' converting these to decimals. If not A2 then A1 if
				 one soln correct. 30°, 150° ie solns left in degrees AWRT 0.52, 2.6 ie correct vals to only 2sf.
				Must see an indication that (b)(i) has been used otherwise $0/4$ so just stating the two correct answers with nothing else scores 0/4.
	Total		8	

MPC2 (cont)	<u> </u>			MPC2 - AQA GCE Mark Scheme 2010 June series
Q	Solution	Marks	Total	Comments
8 (a)		B1	1	
	$\tilde{h} = 0.2$	B1		PI
	$f(x) = 2^{4x}$			
	$I \approx h/2 \{\dots\}$			
	$\{.\}=f(0)+f(1)+2[f(0.2)+f(0.4)+f(0.6$			OE summing of areas of the
	(0.8)]	M1		'trapezia'
	$\{.\} = 1 + 16 + 2(2^{0.8} + 2^{1.6} + 2^{2.4} + 2^{3.2})$			OE Accept 2dp rounded or truncated
	=1+16+2(1.741+3.031+5.278+9.1)	A1		evidence
	$895) = [17 + 2 \times 19.24]$			
	I = 5.55 (to2dp)	A1	4	Must be 5.55
(c)	Stretch(I) in y-direction(II) scale	M1	_	Need (I) and either (II) or (III)
	factor $\frac{1}{8}$ (III)	A1	2	Need (I) and (II) and (III)
	0			
	<u>ALTn</u> : Translation with an indication			Combination of <u>different</u>
	that the translation is in the <i>x</i> -direction			transformations scores 0/2
	$\begin{bmatrix} \frac{3}{4} \\ 0 \end{bmatrix} $ (B1)			
	$\begin{bmatrix} \overline{4} \\ 0 \end{bmatrix}$ (B1)			
				1
(d)	$g(x) = 2^{4(x-1)} - \frac{1}{2}$			B1 for either $2^{4(x+1)} - \frac{1}{2}$ or for
	2			
		B2,1,0		$2^{4(x-1)} + \frac{1}{2}$ or for $2^{4x-1} - \frac{1}{2}$
	$2^{4(x-1)}$			2 2 Reaches a stage from which linear eqn can be
	At $Q, y = 0 \Rightarrow 2^{4(x-1)} = 2^{-1}$	M1		stated directly eg an alternative stage is
		1111		$4(x-1)\log 2 = -\log 2$
	$\Rightarrow 4x - 4 = -1 \Rightarrow x = 0.75$	A1	4	NMS mark as 4 or 0
(e)(i)	$\log_a k = \log_a 2^3 + \log_a 5 - \log_a 4$	M1		One law of logs used
	$\log_a k = \log_a (2^3 \times 5) - \log_a 4$			A second law of logs used; could be
				$\log_a k = \log_a 2^3 + \log_a (\frac{5}{4})$
		M1		$\log_a \kappa = \log_a 2 + \log_a (\frac{1}{4})$
	$\log k = \log (2^3 \times 5)$ let 10 × 1			
	$\log_a k = \log_a(\frac{2^3 \times 5}{4}) = \log_a 10 \Longrightarrow k = 1$	A1	3	CSO AG
(ii)	$2^{4x-3} - \frac{5}{2}$ so			Equate y's, take logs (to any base) of
	$2 -\frac{1}{4} = 30$			both sides <u>and</u> apply 3 rd law of logs.
	$2^{4x-3} = \frac{5}{4} \text{ so}$ (4x-3) log ₁₀ 2 = log ₁₀ $\frac{5}{4}$	N/1		Altn $4x \log 2 = \log \left(\frac{5}{4} \times 2^3\right)$
	$(7x - 5) \log_{10} 2 - \log_{10} \frac{1}{4}$	M1		
	$2\log_{10} 2 + \log_{10} (5)$			Rearrange correctly to $x = \dots$
	$5\log_{10} 2 + \log_{10} \left(\frac{1}{4}\right)$			Altn $4x \log 2 = \log 10$
	$x = \frac{3\log_{10} 2 + \log_{10}\left(\frac{5}{4}\right)}{4\log_{10} 2}$			In both cases, log term(s) must have
	010			same base and expressions must be in
		m1		an exact form, ie not approx. dec. vals
	$x = \frac{\log_{10} 10}{4\log_{10} 2}$ so $x = \frac{1}{4\log_{10} 2}$	A 1	2	CSO AG Must be clear evidence that
	$4\log_{10} 2$ $4\log_{10} 2$	A1	3	base 10 is used, also be convinced
	Total		17	
	TOTAL		75	